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The class of �-complete hypergroups and �-cyclic hypergroups is introduced. Several
properties and examples are found.
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1. INTRODUCTION

In this article we use the definition of hypergroup introduced by Marty (1934).
Let H be a hypergroup and � be the set of all finite products of elements of H . The
relation � is defined on H as follows:

x�y if and only if �x� y� ⊆ u for some u ∈ ��

The relation � was introduced on hypergroups by Koskas (1970) and was studied
mainly by Corsini (1993) and Vougiouklis (1994). The fundamental relation �∗ is the
smallest equivalence relation on H such that H/�∗, the set of all equivalence classes,
is a group. Freni (1991) proved that in hypergroups, the relation � is transitive
and �∗ = �. Using the relation �, Migliorato (1994) defined the notion of complete
hypergroups. Cyclic hypergroups already considered at the begining of the theory’s
history (Wall, 1937) have been later on studied in depth by Vougiouklis (1981) and
afterwards by Konguetsof et al. (1986) and Leoreanu (2000). Cyclic hypergroups
are important not only in the sphere of finitely generated hypergroups but also
for interesting combinatorial implications. Let � � H −→ H/�∗ be the canonical
projection. A hypergroup H is called cyclic with a generator x if �	H
 is a cyclic
group generated by �	x
.

Recently, Freni (2002) introduced the relation � as a generalization of the
relation �. If H is a hypergroup, then �∗ denotes the transitive closure of the relation
� = ⋃

n≥1 �n, where �1 is the diagonal relation and for every integer n > 1, �n is the
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4580 KARIMIAN AND DAVVAZ

relation defined as follows:

x�ny ⇐⇒ ∃	z1� z2� � � � � zn
 ∈ Hn� ∃� ∈ �n � x ∈
n∏

i=1

zi� y ∈
n∏

i=1

z�	i
�

where�n is the symmetric group of order n. Freni proved that �∗ is the smallest strongly
regular equivalence relation (cf. Freni, 2002, Theorem 1.1) such that H/�∗ is an
Abelian group (cf. Freni, 2002, Corollary 1.2). Also, he determined some necessary and
sufficient conditions so that the relation � is transitive (cf. Freni, 2002, Theorem 2.3).

Using the relation � we shall introduce in section 3 the �-closure of a subset A
and we study the properties of C�	A
, where C�	A
 is the intersection of all �-parts
containing A. In Section 4, we introduce the �-complete semi-hypergroups. A semi-
hypergroup H is �-complete if satisfies one of the equivalent conditions:

(1) ∀	x� y
 ∈ H2�∀� ∈ �2�∀a ∈ x�	1
 
 y�	2
 � C�	a
 = x�	1
 
 y�	2
;
(2) ∀	x� y
 ∈ H2�∀� ∈ �2 � C�	x�	1
 
 y�	2

 = x�	1
 
 y�	2
;
(3) ∀	m� n
∈�2� 2≤m�n�∀	x1� � � � � xn
∈Hn�∀	y1� � � � � ym
∈Hm�∀	�� �
∈�n ×�m:

n∏
i=1

x�	i
 ∩
m∏
j=1

y�	j
 
= ∅ �⇒
n∏

i=1

x�	i
 =
m∏
j=1

y�	j
�

We shall introduce the �-cyclic hypergroup in Section 5. A hypergroup H is a
�-cyclic hypergroup with a generator x if H/�∗ is a cyclic group generated by �H	x
,
where �H � H → H/�∗ is the canonical projection. In Section 5, we show that every
�-cyclic and �-complete hypergroup is commutative.

2. NOTATIONS AND PRELIMINARIES

A semi-hypergroup 	H� 

 is a nonempty set H equipped with a hyper-
operation 
, that is a map 
 � H ×H −→ ℘∗	H
, where ℘∗	H
 denotes the family
of all nonempty subsets of H , and for all 	x� y� z
 ∈ H3 � x 
 	y 
 z
 = 	x 
 y
 
 z. A
semi-hypergroup H is said to be a hypergroup if for every a ∈ H � a 
H = H 
 a =
H . In the above definitions, if A�B ∈ ℘∗	H
, then we mean A� B by

A� B = ⋃
a∈A�b∈B

a 
 b�

Let 	H� 

 be a hypergroup and R ⊆ H ×H an equivalence relation. If �A� B� ⊆
℘∗	H
 then we set:

ARB ⇐⇒ aRb� ∀a ∈ A� ∀b ∈ B�

If 	H� 

 is a semi-hypergroup, the relation R is said to be strongly right-regular (resp.
left-regular) if

x R y �⇒ x 
 aR y 
 a
	resp. x R y �⇒ a 
 xRa 
 y
�
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ON THE �-CYCLIC HYPERGROUPS 4581

for all 	x� y� a
 ∈ H3. Moreover, R is called strongly regular if it is strongly regular
to the right and to the left.

For every n ∈ �, we shall write 	�∗
n
H to denote the transitive closure of

the relation 	�n
H define as follows: ∀	x� y
 ∈ H2� x	�n
Hy ⇐⇒ ∃	z1� z2� � � � � zn
 ∈ Hn

such that �x� y� ⊆ ∏n
i=1 zi. Moreover, one puts 	�1
H = �	x� x
 � x ∈ H� and 	�
H =⋃

n∈�	�n
H . We always use �∗ to show the transitive closure of � and it is known
that in every hypergroup �H = �∗

H , see Freni (2002). When it is understood which
hypergroup is being considered �� �n, and �∗

n will be written in place of 	�
H� 	�n
H ,
and 	�∗

n
H , respectively. In general, if R is an equivalence relation on a set A, then
for every S ∈ ℘∗	A
, we shall put R	S
 = ⋃

x∈S R	x
.
Given a hypergroup H , a quotient H/R of H modulo an regular equivalence

relation R becomes a hypergroup under the following hyperoperation:

∀	x� y
 ∈ 	H/R
2� x⊗ y = �z � z ∈ x 
 y��

If R is a strongly regular equivalence on H , then H/R is a group (cf. Corsini, 1993,
Theorem 31). We recall that � is the smallest strongly regular equivalence on H
(cf. Corsini, 1993, Theorem 12). Let � � H −→ H/� be the canonical projection,
the heart of H is the set wH = �−1	1H/�
. One of the most important notions in
hypergroup theory is the heart of a hypergroup. The knowledge of this concept gives
information on the structure of the hypergroup H and in some cases determines
completely.

Complete parts, introduced and studied for the first time by Koskas (1970)
were subsequently analyzed by Corsini (1993). Let A be a part of a semi-hypergroup
H , it means A is subset of H , A is called complete if the following implication is valid:

∀n ∈ �� ∀	x1� � � � � xn
 ∈ Hn�
n∏

i=1

xi ∩ A 
= ∅ �⇒
n∏

i=1

xi ⊆ A�

Let A be a nonempty part of H . The intersection of the parts of H which are
complete and contain A is called the complete closure of A in H ; it will be denoted
by C	A
. A semi-hypergroup H is complete (Migliorato, 1994), if it satisfies one of
the following conditions:

(1) ∀	x� y
 ∈ H2�∀a ∈ x 
 y� C	a
 = x 
 y;
(2) ∀	x� y
 ∈ H2� C	x 
 y
 = x 
 y;
(3) ∀	m� n
 ∈ �2� 2 ≤ m�n�∀	x1� � � � � xn
 ∈ Hn�∀	y1� � � � � ym
 ∈ Hm,

n∏
i=1

xi ∩
m∏
j=1

yj 
= ∅ �⇒
n∏

i=1

xi =
m∏
j=1

yj�

A hypergroup H is called cyclic hypergroup with generator x (Wall, 1937) if
�	H
 is a cyclic group generated by �	x
. An element y in a hypergroup H is
called periodical of period n if xn ⊆ wH and write cycle	y
 = n, where wH is the
heart of hypergroup H and n = min�k ∈ � � xk ⊆ wH�. We will write p	x
 = n. A
semi-hypergroup H is called cyclic (Wall, 1937) if there exists h ∈ H such that for
every x ∈ H , there exists n ∈ � such that x ∈ hn. We call h the s-generator of H .
A hypergroup H is called s-cyclic if it is a cyclic semi-hypergroup. If H is a cyclic
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4582 KARIMIAN AND DAVVAZ

semi-hypergroup s-generated from h and a ∈ H , we call the cyclicly of the integer
m = min�q ∈ �∗ − �1� � a ∈ hq�. We will write cycle	a
 = m.

We recall the following definition from Freni (2002). If H is a semi-
hypergroup, then we set: �1 = �	x� x
 � x ∈ H� and for every integer n > 1,

x�ny ⇐⇒ ∃	z1� z2� � � � � zn
 ∈ Hn� ∃� ∈ �n � x ∈
n∏

i=1

zi and y ∈
n∏

i=1

z�	i
�

Obviously, for every n ≥ 1, the relation �n is symmetric and the relation
�= ⋃

n≥1 �n is reflexive and symmetric. Let �∗ be the transitive closure of �. The
relation �∗ is a strongly regular equivalence relation (cf. Freni, 2002, Theorem 1.1),
and if H is a hypergroup, then � = �∗ (cf. Freni, 2002 Theorem 3.3) and H/�∗ is an
Abelian group (cf. Freni, 2002, Corollary 1.2).

Let M be a nonempty subset of a semi-hypergroup H , we say that M is a �-part
of H (Freni, 2002), if for every n ∈ �∗, for every 	z1� z2� � � � � zn
 ∈ Hn and for every
� ∈ �n, we have

n∏
i=1

zi ∩M 
= ∅ �⇒
n∏

i=1

z�	i
 ⊆ M

Let � � H → H/�∗ be the canonical projection. D	H
 is called derived hypergroup
and we have D	H
 = �−1	1H/�∗
 (cf. Freni, 2002, Theorem 3.1). We also have for
every nonempty subset M of hypergroup H , �−1	�	M

 = D	H
�M = M �D	H

(cf. Freni, 2002, Theorem 3.2).

An element e ∈ H is called an identity if a ∈ e 
 a ∩ a 
 e for all a ∈ H . An
element x′ is called an inverse of x if an identity e exists such that e ∈ x 
 x′ ∩ x′ 
 x.
An element u of a hypergroup H is called a scalar identity if u 
 x = x 
 u = singleton
set for all x ∈ H .

A hypergroup H is regular if it has at least one identity and every elements
have at least one inverse. If H is regular, for every a ∈ H , we denote i	x
 the set
of the inverses of x. A regular hypergroup is said to be reversible, if it satisfies the
following conditions:

∀	a� b� x
 ∈ H3 � a ∈ b 
 x �⇒ ∃x′ ∈ i	x
 � b ∈ a 
 x′�
a ∈ x 
 b �⇒ ∃x′′ ∈ i	x
 � b ∈ x′′ 
 a�

A commutative reversible hypergroup is called canonical if it has a scaler identity
and every element has a unique inverse (cf. Corsini, 1993, Definition 165). A
commutative reversible hypergroup is called feebly canonical (cf. Corsini, 1993,
Definition 227) if

∀	a� x
 ∈ H2� ∀�u� v� ⊆ i	x
� u 
 a = v 
 a� (2.1)

3. �-CLOSURE PARTS OF HYPERGROUPS

We begin with some properties of �-parts of hypergroups which are valid in
every hypergroups. We suppose that H = 	H� 

 is a hypergroup and �H � H −→
H/�∗ is the canonical projection.
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ON THE �-CYCLIC HYPERGROUPS 4583

Definition 3.1. Let A be a nonempty subset of H . The intersection of �-parts H
which contain A is called �-closure of A in H . It will be denoted C�	A
.

Theorem 3.2. Let A be a nonempty subset of H . We pose

G1	A
 �= A�

Gn+1	A
 �=
{
x � ∃p ∈ �� ∃	h1� � � � � hp
 ∈ Hp� ∃� ∈ �p � x ∈

p∏
i=1

h�	i
�
p∏

i=1

hi ∩Gn 
= ∅
}
�

G	A
 �= ⋃
1≤n

Gn	A
�

Then G	A
 = C�	A
.

Proof. It is necessary to prove:

(i) G	A
 is a �-part of H ;
(ii) If A ⊆ B and B is a �-part of H then G	A
 ⊆ B.

Therefore,

(i) Let
∏p

i=1 xi ∩G	A
 
= ∅ then there exists n ∈ � such that
∏p

i=1 xi ∩Gn	A
 
= ∅.
For every � ∈ �n and y ∈ ∏n

i=1 x�	i
 we have y ∈ Gn+1	A
 and
∏n

i=1 x�	i
 ⊆ G	A
,
and so G	A
 is a �-part of H ;

(ii) We have A = G1	A
 ⊆ B. Suppose that B is a �-part of H and Gn	A
 ⊆ B.
We prove that this implies Gn+1	A
 ⊆ B. For every z ∈ Gn+1	A
 there exist p ∈
�, 	x1� � � � � xp
 ∈ Hp and � ∈ �p such that z ∈ ∏p

i=1 x�	i
,
∏p

i=1 xi ∩Gn	A
 
= ∅.
Gn	A
 ⊆ B thus

∏p
i=1 xi ∩ B 
= ∅ hence z ∈ ∏p

i=1 x�	i
 ⊆ B and so Gn+1	A
 ⊆ B.
�

Lemma 3.3. We have:

(i) ∀n ≥ 2�∀x ∈ H�Gn	G2	x

 = Gn+1	x
;
(ii) x ∈ Gn	y
 ⇔ y ∈ Gn	x
.

Proof. (i)

G2	G2	x



=
{
z � ∃p ∈ �� ∃	h1� � � � � hp
 ∈ Hp� ∃� ∈ �p � z ∈

p∏
i=1

h�	i
�
p∏

i=1

hi ∩G2 
= ∅
}
= G3�

We now shall proceed by induction: Suppose that Gn−1	G2	x

 = Gn	x
, then

Gn	G2
 �

=
{
z � ∃p ∈ �� ∃	h1� � � � � hp
 ∈ Hp� ∃� ∈ �p � z ∈

p∏
i=1

h�	i
�
p∏

i=1

hi ∩Gn−1	G2	x

 
= ∅
}

=
{
z � ∃p ∈ �� ∃	h1� � � � � hp
 ∈ Hp� ∃� ∈ �p � z ∈

p∏
i=1

h�	i
�
p∏

i=1

hi ∩Gn 
= ∅
}

= Gn+1	x
�
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4584 KARIMIAN AND DAVVAZ

(ii) We prove the affirmation by induction. It is clear that x ∈ G2	y
 ⇔ y ∈
G2	x
. Suppose that x ∈ Gn−1	y
 ⇔ y ∈ Gn−1	x
. Let x ∈ Gn	y
, then there exist
q ∈�� 	a1� � � � � aq
 ∈ Hq and � ∈ �q such that

x ∈
q∏

i=1

a�	i
�
n∏

i=1

ai ∩Gn−1	y
 
= ∅�

and thus there exists v ∈ ∏n
i=1 ai ∩Gn−1	y
. Therefore, by choosing � = 1 the identity

map, v ∈ G2	x
 is obtained. From v ∈ Gn−1	y
 we have y ∈ Gn−1	G2	x

 = Gn	x
.
�

Theorem 3.4. The relation xGy ⇔ x ∈ G	�y�
 is an equivalence.

Proof. We write C�	x
 instead of C�	�x�
. G is clearly reflexive. Now, let xGy and
yGz. If P is a �-part of H and z ∈ P, then C�	z
 ⊆ P� y ∈ P and consequently x ∈
C�	y
 ⊆ P. For this reason x ∈ C�	z
 that is xGz. The symmetrically of G follows in
a direct way from the preceding lemma. �

Theorem 3.5. ∀	x� y
 ∈ H2, one gets xGy ⇔ x�∗y.

Proof. Let x�y thus:

∃n ∈ � � x�ny �⇒ ∃	z1� � � � � zn
 ∈ Hn� ∃� ∈ �n � x ∈
n∏

i=1

zi� y ∈
n∏

i=1

z�	i
�

We have
∏n

i=1 zi ∩ �x� 
= ∅, so

x ∈ G2	y
 �⇒ x ∈ C�	y
 �⇒ xGy �⇒ � ⊆ G�

Since G is an equivalence relation, then �∗ ⊆ G.
Conversely, if xGy, then there exists n ∈ � such that x ∈ Gn+1	y
, from this it

follows that ∃m ∈ �� ∃	z11� � � � � z1m
 ∈ Hm� ∃�1 ∈ �n:

x ∈
m∏
i=1

z1�1	i
�
m∏
i=1

z1i ∩Gn	y
 
= ∅�

thus x1 ∈
∏m

i=1 z
1
i ∩Gn	y
. Therefore x�x1 and x1 ∈ Gn	y
, and so there exist

r ∈�� 	z21� � � � � z
2
r 
 ∈ Hr� �2 ∈ �r such that

x1 ∈
r∏

i=1

z2�2	i
�
r∏

i=1

z2i ∩Gn−1	y
 
= ∅ �⇒ ∃x2 ∈
r∏

i=1

z2i ∩Gn−1	y
 �⇒ x1�x2�

So as a consequence, one obtains

∃xn ∈
s∏

i=1

zn�n	i
 ∩Gn−	n−1
	y
 �⇒ xn ∈ G1	y
 = �y� �⇒ xn = y�

and so x�x1 � � � �xn = y. Therefore G ⊆ �∗. �
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ON THE �-CYCLIC HYPERGROUPS 4585

Theorem 3.6. If B is a nonempty subset of H , one has C�	B
 =
⋃

b∈B C�	b
.

Proof. It is clear for every b ∈ B�C�	b
 ⊆ C�	B
, because every �-part containing
B contains �b�, therefore

⋃
b∈B C�	b
 ⊆ C�	B
. To prove the converse recall that

C�	B
 =
⋃

1≤n Gn	B
 by Theorem 3.2. We shall prove theorem by induction on n.
Let n = 1 then by Theorem 3.2, we have

G1	B
 = B = ⋃
b∈B

�b� = ⋃
b∈B

G1	b
�

Suppose that the statement holds for n, that is, Gn	B
 ⊆
⋃

b∈B Gn	b
 and
we shall prove that Gn+1	B
 ⊆

⋃
b∈B Gn+1	b
. If z ∈ Gn+1	B
, then there exist

q ∈�� 	x1� � � � � xq
 ∈ Hq� � ∈ Sq such that

z ∈
q∏

i=1

x�	i
�
q∏

i=1

xi ∩Gn	B
 
= ∅�

by induction
∏q

i=1 xi ∩ 	
⋃

b∈B Gn	b

 
= ∅, hence there exists b′ ∈ B such that
∏q

i=1 xi ∩
Gn	b

′
 
= ∅. Since z ∈ ∏q
i=1 x�	i
 one gets z ∈ Gn+1	b

′
 and so one has proven
Gn+1	B
 ⊆

⋃
b∈B Gn+1	b
. Therefore C�	B
 ⊆

⋃
b∈B C�	b
. �

Corollary 3.7. If A is a �-part of H , then A� B�B � A are �-parts of H for every
B ∈ ℘∗	H
.

Proof. We have C�	A�B
 = A�B�D	H
=A�D	H
�B=C�	A
�B=A� B.
�

Corollary 3.8. Let A ∈ ℘∗	H
, then A is a �-part of H if and only if A�D	H
 = A.

Proof. We have C�	A
 = A�D	H
 = A. �

Corollary 3.9. If A ∈ ℘∗	H
, one has D	H
� A = A�D	H
 = C�	A
.

Corollary 3.10. D	H
 is a �-part of H .

4. �-COMPLETE HYPERGROUPS

We assume that �H � H −→ H/�∗ is the canonical projection.

Theorem 4.1. Let H be a semi-hypergroup, the following conditions are equivalent:

(i) ∀	x� y
 ∈ H2�∀� ∈ �2�∀a ∈ 	x�	1
 
 y�	2

 � C�	a
 = x�	1
 
 y�	2
;
(ii) ∀	x� y
 ∈ H2�∀� ∈ �2 � C�	x�	1
 
 y�	2

 = x�	1
 
 y�	2
;
(iii) ∀	m� n
∈�2� 2≤m�n�∀	x1� � � � � xn
∈Hn�∀	y1� � � � � ym
∈Hm�∀	�� �
∈�n ×�m,

the following implication is valid:

n∏
i=1

x�	i
 ∩
m∏
i=1

y�	i
 
= ∅ �⇒
n∏

i=1

x�	i
 =
m∏
i=1

y�	i
�
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4586 KARIMIAN AND DAVVAZ

Proof. By Theorem 3.6, we have:

(i) ⇒ (ii) C�	x�	1
 
 y�	2

 =
⋃

a∈x�	1

y�	2
 C�	a
 = x�	1
 
 y�	2
.
(ii) ⇒ (i) From a ∈ x�	1
 
 y�	2
 follows C�	a
 ⊆ C�	x�	1
 
 y�	2

 = x�	1
 
 y�	2


since one has C�	a
 ∩ 	x�	1
 
 y�	2

 
= ∅, then x�	1
 
 y�	2
 ⊆ C�	a
 and so C�	a
 =
x�	1
 
 y�	2
.

(ii) ⇒ (iii) From
∏n

i=1 x�	i
 ∩
∏m

i=1 y�	i
 
= ∅ follows that a ∈ ∏m
i=1 y�	i
 exists

such that
∏n

i=1 x�	i
 ⊆ y�	1
 
 a ⊆ ∏m
i=1 y�	i
 and so

∏m
i=1 y�	i
 =

∏n
i=1 x�	i
.

(iii) ⇒ (ii) From (iii) the following implication is valid:
∏n

i=1 x�	i
 ∩∏m
i=1 y�	i
 
= ∅ �⇒ ∏n

i=1 x�	i
 =
∏m

i=1 y�	i
. Thus ∀	a� b
 ∈ H2�∀� ∈ �2 � a�	1
 
 b�	2
 is
�-part. �

Definition 4.2. A semi-hypergroup H is called �-complete if it satisfies one of the
equivalent condition of the preceding theorem.

Corollary 4.3. Let H be a commutative hypergroup, then H is a �-complete
hypergroup if and only if H is a complete hypergroup.

Theorem 4.4. If H is a �-complete semi-hypergroup and x̄ ∈ H/�∗ is a member of
quotient H/�∗ modulo a relation �∗, then either there exist 	a� b
 ∈ H2� � ∈ �2 such that
�∗	x
 = a�	1
 
 b�	2
 or �∗	x
 = �x�.

Proof. It is enough to see that for Theorem 4.1, each product is a class of
equivalence. �

Theorem 4.5. If H is a �-complete hypergroup, ∀x̄ ∈ H/� there exist 	a� b
 ∈ H2�
� ∈ �2 such that x = a�	1
 
 x�	2
.

Proof. It follows immediately from the preceding theorem and Theorem 4.1 in
Freni (2002). �

Theorem 4.6. Let H be a �-complete hypergroup; then:

(i) D	H
 is the set of two-side identities of H;
(ii) H is regular and reversible.

Proof. By Corollary 3.9 and Theorem 4.1 we have:

(i) If u ∈ D	H
, then ∀a ∈ H� a 
 u = a 
D	H
 = C�	a
;
(ii) Let 	a� e� a′
 ∈ H3� � ∈ �2 be such that e ∈ a′

�	1
 
 a�	2
. Then from reflexivity of
D	H
 we have a�	1
 
 a′

�	2
 = D	H
. �

Definition 4.7. A hypergroup H is said �-flat if for every subhypergroup K of H ,
one has D	K
 = D	H
 ∩ K.

Theorem 4.8. Every �-complete hypergroup is �-flat.
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Proof. Let H be a �-complete hypergroup and K a sub-hypergroup of H , then
we have D	H
 ∩ K = �e ∈ K � ∀x ∈ H� x ∈ e 
 x ∩ x 
 e� ⊆ D	K
. Furthermore, if �K
is the restriction of � on K, then

y ∈ CK
� 	x
 ⇐⇒ y�Kx �⇒ y�∗Hx �⇒ y ∈ CH

� 	x
 �⇒ CK
� 	x
 ⊆ CH

� 	x
�

It is clear that D	H
 ∩ K 
= ∅. If x ∈ D	H
 ∩ K ⊆ D	K
 one has CK
� 	x
 =

D	K
� CH
� 	x
 = D	H
, and so D	K
 ⊆ D	H
. Therefore, D	K
 ⊆ D	H
 ∩ K. �

Theorem 4.9. Let S be a sub semi-hypergroup of a �-complete hypergroup H
such that S ∩D	H
 
= ∅, then D	H
 ⊆ S. If K is a subhypergroup of H , one has
D	K
 = D	H
.

Proof. If x ∈ S ∩D	H
, then x 
 x ⊆ S ∩D	H
, but for � = 1 one has x 
 x =
C�	x 
 x
 = D	H
, from this follows D	H
 ⊆ S ∩D	H
 that is D	H
 ⊆ S.

If K is a subhypergroup, since D	H
 ∩ K 
= ∅, one has D	H
 ⊆ K and then
from the preceding theorem one deduces D	H
 = D	K
. �

5. �-CYCLIC HYPERGROUPS

Definition 5.1. A hypergroup H is said to be �-cyclic with a generator x if H/� is
a cyclic group generated by �H	x
.

Definition 5.2. An element x of hypergroup H is called �-periodical of �-period n
if xn ⊆ D	H
 and n = min�k ∈ N � xn ⊆ D	H
�. We write P�	x
 = n.

Corollary 5.3. Let H be a commutative hypergroup, then H is a cyclic hypergroup if
and only if H is a �-cyclic hypergroup.

Theorem 5.4. Let H be a hypergroup and x ∈ H an element of �-period n then:

(i) ∀	s� t
 ∈ �1� 2� � � � � n�2 with s 
= t, one has C�	x
s
 ∩ C�	x

t
 
= ∅;
(ii) ∀m > n there exists r ∈ �1� 2� � � � � n� such that C�	x

m
 = C�	x
r
.

Proof. (i) We suppose absurd u ∈ C�	x
s
 ∩ C�	x

t
, by Freni (2002, Theorem 3.2)
and Theorem 3.6 we have �	xs
 = C�	u
 = C�	x

t
, from which �	xs
 = �	xt
 and
therefore if s > t� �	xs−t
 = �	xs
�	xt
 = 1, thus xs−t ∈ D	H
 and P�	x
 ≤ s − t,
against the hypothesis.

(ii) By a divided algorithm, let q� r be such that m = qn+ r with 0 ≤ r < n,
if 0 < r one has �	xm
 = �		xn
q
�	xr
 = �	xr
, therefore C�	x

m
 = C�	x
r
. If r = 0,

then �	xm
 = �		xn
q
 = 1 from which xm ⊆ D	H
 and for this reason C�	x
m
 =

D	H
 = C�	x
n
. �

Theorem 5.5. Let H be a hypergroup and x ∈ H an element of �-period n and
let ��x�� be the smallest �-complete subhypergroups that contain �x� then ��x�� =⊕n

r=1 C�	x
r
, where ⊕ denotes a union of disjoint sets C�	x

r
 for r = 1� � � � � n.
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Proof. It is enough to show that for every y ∈ ��x�� there exists m ∈ N such
that y ∈ C�	x

m
. Let y ∈ ��x�� = C�	Gm
 for some Gm, then t ∈ Gm exists such that
y ∈ C�	t
� t ∈ Gm implies that t1� � � � � tm and � ∈ Sm exist such that x ∈ ∏n

i=1 ti and
t ∈ ∏n

i=1 t�	i
, therefore �H	t1
� � � � � �H	tm
 = �H	y
 since by Corollary 3.10 we have
Gm ⊆ D	H
.

On the other hand, ∀i� �H	ti
 = �H	x
 or �H	ti
 = 	�H	x


−1, from this

it follows that h ∈ Z exists such that �H	y
 = 	�H	x


h. If h ∈ nZ��H	y
 = 1,

then y ∈ D	H
 = xn. If h 
∈ nZ, then q ∈ Z� 0 < r < n exist such that h = nq +
r� �H	x

r
 = �H	x
qn
�H	x

r
, from which y ∈ C�	x
r
, by Theorem 5.4, we have ��x�� ⊆⊕n

i=1 C�	x
r
. The inverse inclusion is immediate. �

Theorem 5.6. If H is a �-cyclic and �-complete then it is commutative.

Proof. It follows immediately from Theorem 4.1. �

Theorem 5.7. Let H be a �-cyclic and �-complete hypergroup s-generated from h and
cycle	h
 = r, then H is a join space.

Proof. It follows from Corsini and Leoreanu (2003, Theorem 284) and
Corollary 5.3. �

Definition 5.8. If H is a �-cyclic semi-hypergroup we call the cyclicly of H the
max�cycl	a
 � a ∈ H� and we denote it cyclic	H
.

Theorem 5.9. If H is a cyclic semi-hypergroup with a generator h such that
cycle	h
 = 2 and cyclic	H
 = m, then H = hm = D	H
.

Proof. It similarly follows from Corsini and Leoreanu (2003, Theorem 287). �

Theorem 5.10. Let H be a �-cyclic and �-complete hypergroup s-generated from h
and cycle	h
 = r, then H = ⊕r

i=2 h
i.

Proof. If r = 2 it follows from Theorem 5.9. Let r > 2, from Theorem 4.1
and Corsini and Leoreanu (2003, Theorem 285) one has hr−1 = D	H
, for this
reason P�	h
 divides r − 1, if there where P�	h
 = s < r − 1, then hs = D	H
, from
which h ∈ hs 
 h = hs+1 with s + 1 < r, which is absurd because cycle	h
 = r. Thus
P�	h
 = r − 1. By Theorem 5.5 one has H = ⊕r−1

i=1 C�	h
r
, but C�	h
 = hr and for

every t: 1 < t ≤ r − 1, one has C�	h
t
 = ht. For this reason H = ⊕r

i=2 h
i. �
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